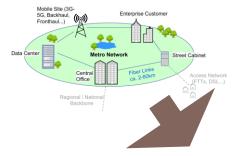
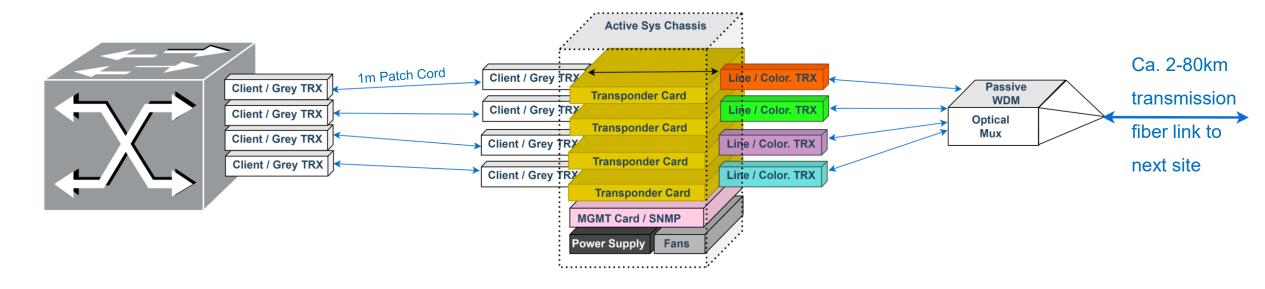
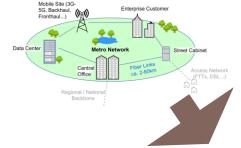
Power Consumption Considerations in Optical Metro Transport Networks


The Importance of Power Consumption in Telecoms

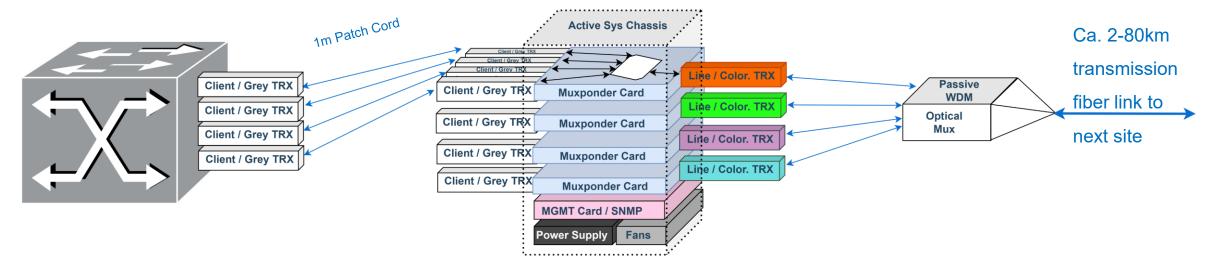
- Steve Harris, **Digital Transformation / Orange Enterprise (**March 2023):
 - "The telecoms industry is responsible for 2-3% of the total power consumption of humankind. According to GSMA research, energy costs today represent between 20% and 40% of a telecoms company's OPEX" (www.orange-business.com/en/blogs/greening-telecoms-network)
- McKinsey Study "The growing imperative of energy optimization for Telco Networks" (Nov 2024):
 - "large operators have seen their energy cost increases outpace sales growth by more than 50 percent."
 - "Pressure is likely also to come from regulators around the world, as they begin to adopt their own decarbonisation goals and factor sustainability considerations into their policies."


https://www.mckinsev.com/industries/technology-media-and-telecommunications/our-insights/the-growing-imperative-of-energy-optimization-for-telco-networks

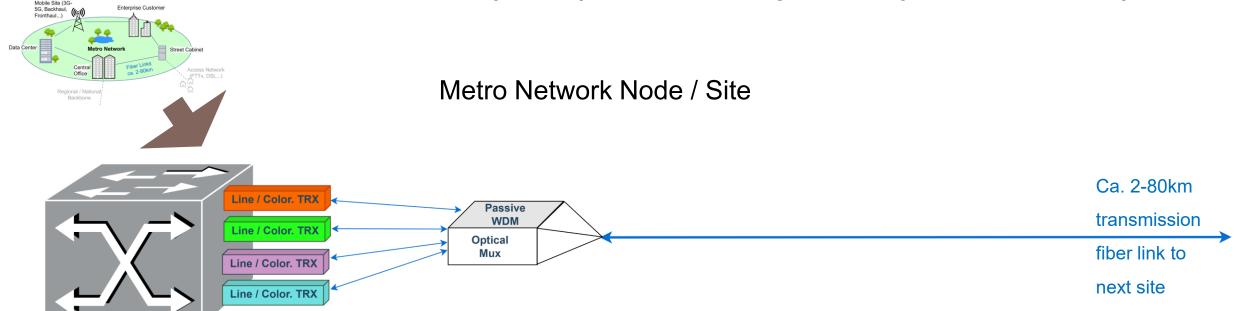
Traditional Approach: Active (WDM) Transport Systems - Transponding



Metro Network Node / Site



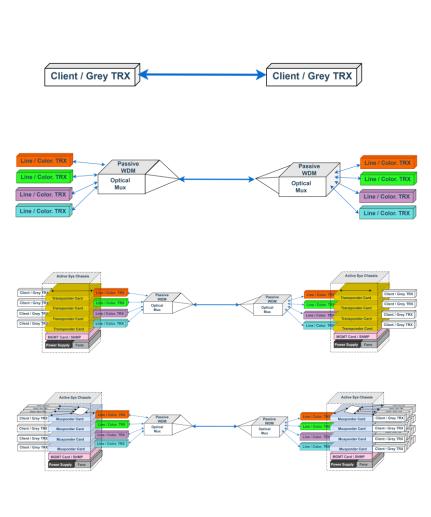
Traditional Approach: Active (WDM) Transport Systems - Muxponding



Metro Network Node / Site

"Modern" Approach: Passive (WDM) Transport Systems (aka IPoDWDM)

Methodology


- METRO Links = "typical distances of around 10-80km"
- Only comparing the Transport Technology, **NOT** including the "L2/L3", i.e. Routers, Switches, Radios etc...
- Does not include additional items, eg amplifiers.
- Comparing power on per link base (incl. both nodes), looking at data rates of 1G, 10G, 25G, 100G, 400G
- Power on per link base:
 - the power consumed by the chassis itself, ie broken down for 1 line in said active system and related to 1 coloured TRX at client speed in the host
- Muxponding based on equivalent Client data rate for comparison with Line TRX
 - i.e. 100G client aggregation into 400G Line, we need to compare it to the alternative of 100G transport, not 400G Coloured Transceivers in the host)

Power Consumption PER LINK for 4 Transport Scenarios

HUBER+SUHNER

assume 10G

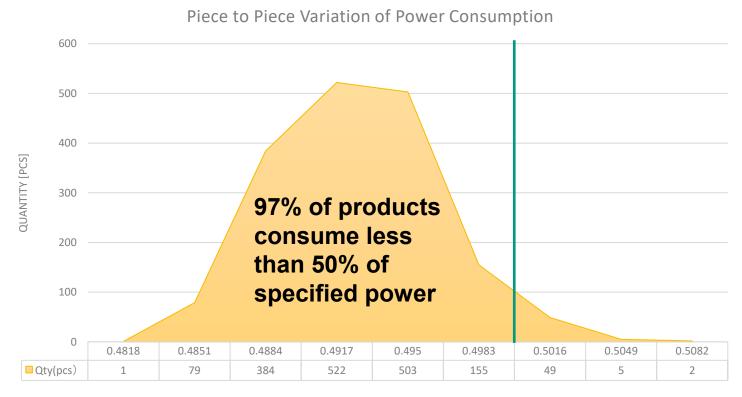
	Scenario	Fully included Equipment	Proportionately included Equipment
Transport	Grey TRX	2pcs Grey (long reach) TRX	
Passive 7	pWDM	2pcs Coloured WDM Line TRX	
Active Transport	Trans- ponding	4pcs Grey (shortest reach) TRX 2pcs Coloured WDM Line TRX	2pcs Transponder Card 2pcs Chassis, each incl. 2 Fan 2pcs <i>redundant</i> Power Supply 2pcs Management Cards
Active 1	Mux- ponding ¹	4pcs Grey (shortest reach) TRX	2pcs Muxponder Card 2pcs Line TRX (colored or not) 2pcs Chassis, each incl. 2 Fans 2pcs redundant Power Supply 2pcs Management Card

Device Power Consumption per Data Sheet – Transceivers (1-25Gig)

	Power	
Transceiver Type	Consumption	
· ·	(max) [W]	
1G SFP SX (500m, MMF)	1	
1G SFP ZX (80km, Industrial Temperature Range)	1	
1G SFP CWDM ZX (80km)	1	
1G SFP DWDM EZX (120km)	1,2	
10G SFP+ SR (500m, MMF)	1	
10G SFP+ SR (500m, MMF, Ind. Temp)	1	
10G SFP+ LR (10km, Ind. Temp.)	1	
10G SFP+ ZR+ (100km, Ind. Temp.)	1,8	
10G SFP+ CWDM ZR (80km)	1,5	
10G SFP+ CWDM ZR (80km, Ind. Temp)	1,6	
10G SFP+ DWDM ER (40km)	1,3	
10G SFP+ DWDM ER (40km, Ind. Temp)	1,6	
10G SFP+ DWDM ZR (80km, Ind. Temp.)	1,6	
25G SFP28 SR (500m, MMF)	1	
25G SFP28 LR (10km)	1,2	
25G SFP28 ER (40km)	1,8	
25G SFP28 CWDM LR ("40km")	1,2	
25G SFP28 DWDM LR ("40km", Ind. Temp.)	2	

Short Reach Client Grey TRX
Long Reach Client / Line Grey TRX
Line WDM Colored TRX

- (almost) independent of data rate (at 1-25G)!
- Maximum reach has / has no significant influence on power usage.
- Specified operating case (!) temperature range (Standard 0 to 70°C vs. Ind. Temp. -40° to 85°C) makes a difference
- Coloured WDMs (often) use Temperature Controllers


Note: example TRX is Huber+Suhner CUBO TRX.

However, underlying data used in this model
originates from ca. 10 manufacturers. Shown values
are average values over multiple makers, however,
are mostly anyway identical

TRX Power Consumption: Data Sheet vs Part to Part Variation

Example 1G LX SFP

TRANSCEIVER POWER CONSUMPTION [W]

Qty(pcs)

1G SFP LX

Product number 85210507 Identifier CSS-303A11

Variation: 10km, 1310nm, LC/PC duplex,

Singlemode

Type 1G SFP LX

Media Reach Type10km, 1310nm, Singlemode

fiber

Protocol 1G Ethernet, 1G Fiber Channel, CPRI

2

https://www.hubersuhner.com/en/shop/product/ transceivers/pluggable-transceivers/1g-2-5g-6g-8g-10g/85210507/1g-sfp-lx

Key features

Multi-protocol support

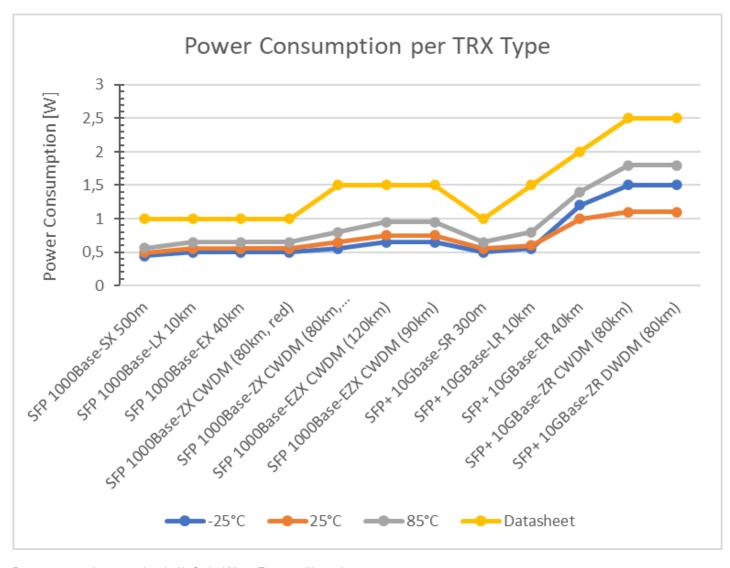
Data rate 125 Mbps and 1.0625...1.25 Gbps

Reach up to 10km

Wavelength 1310nm

LC/PC duplex connector

Singlemode fiber


Temp. range 0 ... 70°C

Link budget at least 11 dB

Power consumption < 1 W

TRX Power Consumption: Influence of Case Temperature

- Power Consumption of Client & Line TRX at 1 & 10Gig highly depending on case temperature
- But always only a fraction of data sheet values

Note: example TRX is Huber+Suhner CUBO TRX. However, underlying data used in this model originates from ca. 10 manufacturers. Shown values are average values over multiple makers, however, are mostly anyway identical

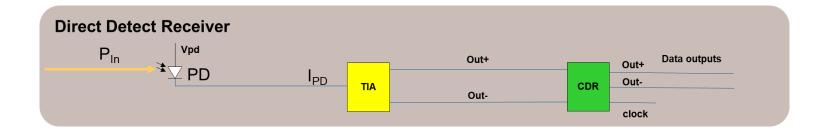
Device Power Consumption per Data Sheet – Transceivers (100-400Gig)

Transceiver Type	Power Consumption (max) [W]		
100G QSFP28 SWDM4 (100m, MMF)	,	3,5	_
100G/40G QSFP28 SR1.2 (100m, MMF)		3,5	
100G QSFP28 SR4 (150m, MMF)	2		
100G QSFP28 LR4 (10km)	4		
100G QSFP28 LR4 (10km, Ind. Temp.)	5		
100G QSFP28 LR4 (10km, Hermetic)	3,5		
100G QSFP28 ER4 lite (30km)	4,5		
100G QSFP28 ER4 (40km, Ind. Temp)	5,5		
100G QSFP28 ZR4 (80km)	6,5		
100G QSFP28 ZR4 (80km, Ind. Temp.)		7,5	
100G QSFP28 DWDM ZR (100km)	5,5		
100G QSFP28 Coherent (limited DSP, 80km Ind. Temp.)		6	
100G QSFPDD Coherent (full DSP, 800km)		23,6	
400G QSFP56-DD SR8 (100m, MMF)	10		
400G QSFP56-DD DR4 (500m SMF)	10		
400G QSFP56-DD LR4 (10km)	12		
400G QSFP56-DD ER8 (40km)	15,4		
400G QSFP56-DD Coherent DWDM ZR+ (full DSP, 800km)	23,6		

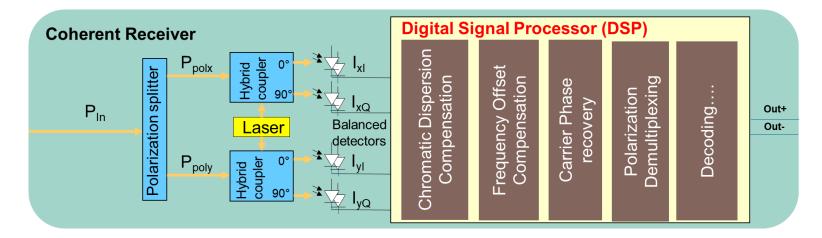
Short Reach Client Grey TRX
Long Reach Client / Line Grey TRX
Line WDM Colored TRX

Power Consumption:

- Very dependent on data rate!
- Different product designs can make a difference
- Main driver is modulation technology, i.e.
 - "Direct Detect" vs. "Coherent"
- Importance of CAUI for ≥100G



Note: example TRX is Huber+Suhner CUBO TRX.


However, underlying data used in this model
originates from ca. 10 manufacturers. Shown values
are average values over multiple makers, however,
are mostly anyway identical

Direct Detect vs. Coherent TRX: Main Difference are the Receivers

Direct Detect TRX: few & simple optoelectronics

Coherent TRX

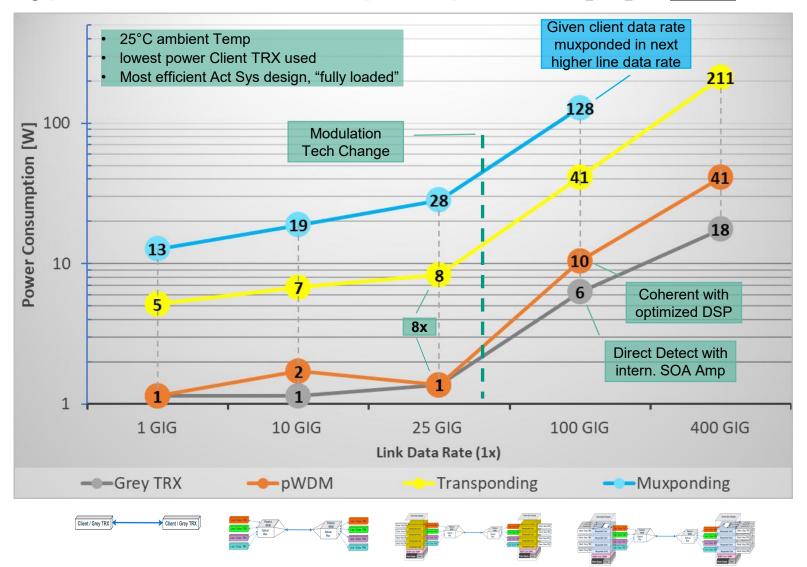
- Much more (opto-)electronics
- Extremely power-hungry DSP processor chip
- Which also contains Muxponder and data processing functionalities

Summary on Transceiver Power Consumption

- Data Sheets state the maximum power consumption. Can differ hugely from actual power consumption.
- Model is based on typical power consumption. i.e. average of part-to-part variation and 25°C as case temperature (& ambient temperature for Active Systems)
- Direct Detect TRX 1G, 10G, 25G (100G) typically consume 40-60% of their given maximum
 - 57% used in model
- Coherent TRX (≥ 100G) depending on specific DSP designs, typical power is around 75-90% of data sheet (max) value
 - 87% used in model

Notes on Active Transport System Power Consumption

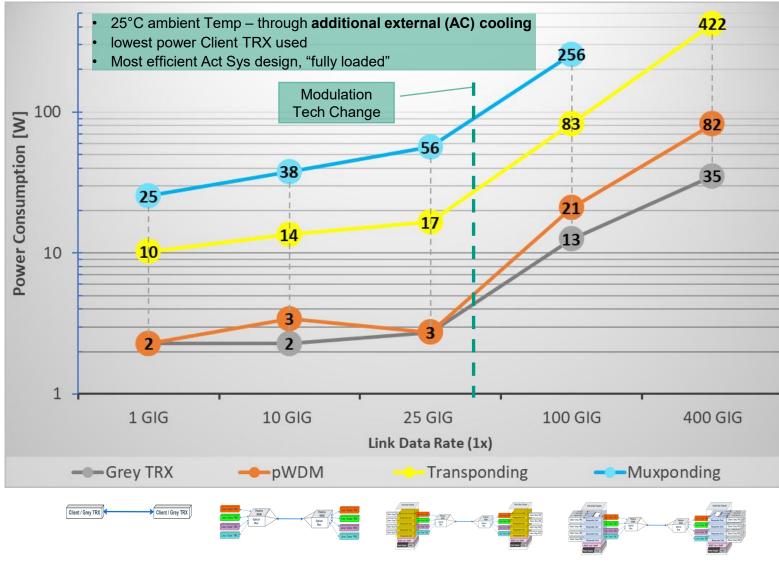
- The power consumption (actual, typical, max.) greatly varies from vendor to vendor, caused by differing design (used electronics and chips...) and additional features
- Biggest variation is on muxponding variants.
- A not "fully loaded" / utilised chassis, line card etc consumes much more power per service.
- Power consumption of electronics rises with **ambient temperature** (here "typical" assumed as 25°C!)
- "Typical" power consumption values represent a best-case scenario based on
 - A) lowest power system
 - B) fully loaded smallest possible set-up (i.e. no 3HU Chassis with 2 line cards for 1 service)
- Active Transport solutions tend to use much more power than our "Typical Model"!


Note: Depicted example Active System products originate from Huber+Suhner. However, underlying data used in this model originates from various vendors.

Notes on Cooling / Air Conditioning

- All scenarios are calculated with and without external (AC) cooling, reflecting only additional cooling for the transport, <u>not</u> the routers etc.
- Again, how much energy is needed for cooling e.g. 1W?
 - depends on too many varied factors to be precisely reflected in this presentation.
- Is "over cooling" an issue?
 - cooling capacity can be over dimensioned (data sheet based calculations!), which can lead to additional (significant) power consumption.
- As an approximation of **power for cooling we used a factor of 2**, i.e. every Watt that you have on transport requires (at very least) another Watt for cooling.
 - · external cooling will at least double the power used of power needed to transport data.

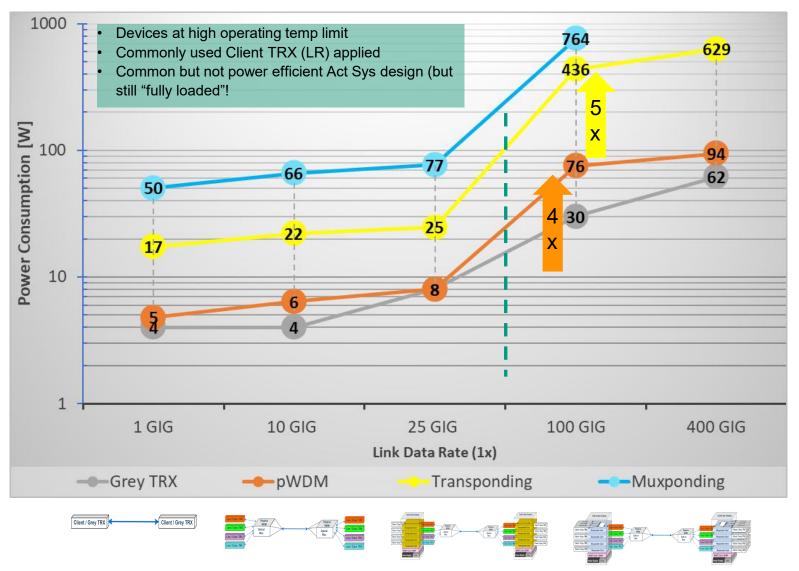
Typical Power Consumption per Link [W] - Excl. external Cooling



Acknowledgement that cost (power) per bit carried is lower at higher speeds

Transponding uses approx. 4-5 times higher power consumption vs pWDM

Muxponding uses approx. 10-20 times higher power consumption vs pWDM


Typical Power Consumption per Link [W] - Incl. external Cooling

Based on model assumptions all **power consumption**, including Cooling, **will simply double**.

However, it makes a huge difference if you double e.g 2W vs. 38W (especially if you operate more than 1 link)

Comparing "Max." Power Consumption per Link [W] – Excl. external Cooling

- Notes:
 - Operating devices at high operating temperature can impact performance over time
 - Use of "Industrial Temp" TRX and common LR TRX as Client
- Active System use power even when not fully populated ,ie not power optimized designs
 - Results in ~2-3 times of power consumption for pWDM compared to "Typical (incl. cooling") scenarios
 - Increase ~4-5 times for Active Transport
- Can increase necessary power consumption by a factor >100 times!

Summary

- With the continued trend of **increasing data rates** in transport networks, the power usage will increase further.
- Some scenarios can result in consuming up to >100 times more electrical power than technologically necessary for transporting services
- This energy inefficiency combined with the growing data rate is becoming an OPEX threat for carriers.
- Passive Transport significantly reduce (direct energy and CO2) costs by at least a factor of 5 to 20!
- We <u>do not</u> suggest using only Passive WDM.
 - Many operators mix passive & active systems on same Metro Optical network

Note, **less power used by** the network means a significant reduction of CO2 **Scope 3** (Scope 3 = CO2 generated at production of devices at suppliers)

steve.jones@hubersuhner.com

+44 7900 881729 Steve Jones | LinkedIn

Follow our #Brainsnack videos:

HUBER+SUHNER Cube Optics AG: Overview | LinkedIn

